Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(4): e3002085, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37079643

RESUMO

In most sexually reproducing organisms crossing over between chromosome homologs during meiosis is essential to produce haploid gametes. Most crossovers that form in meiosis in budding yeast result from the biased resolution of double Holliday junction (dHJ) intermediates. This dHJ resolution step involves the actions of Rad2/XPG family nuclease Exo1 and the Mlh1-Mlh3 mismatch repair endonuclease. Here, we provide genetic evidence in baker's yeast that Exo1 promotes meiotic crossing over by protecting DNA nicks from ligation. We found that structural elements in Exo1 that interact with DNA, such as those required for the bending of DNA during nick/flap recognition, are critical for its role in crossing over. Consistent with these observations, meiotic expression of the Rad2/XPG family member Rad27 partially rescued the crossover defect in exo1 null mutants, and meiotic overexpression of Cdc9 ligase reduced the crossover levels of exo1 DNA-binding mutants to levels that approached the exo1 null. In addition, our work identified a role for Exo1 in crossover interference. Together, these studies provide experimental evidence for Exo1-protected nicks being critical for the formation of meiotic crossovers and their distribution.


Assuntos
Proteínas de Saccharomyces cerevisiae , Troca Genética , Quebras de DNA de Cadeia Simples , DNA Cruciforme , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Meiose/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
PLoS One ; 17(4): e0264365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35385474

RESUMO

Domestic dogs exhibit diverse types of both congenital and non-congenital hearing losses. Rhodesian Ridgebacks can suffer from a progressive hearing loss in the early stage of their life, a condition known as early onset adult deafness (EOAD), where they lose their hearing ability within 1-2 years after birth. In order to investigate the genetic basis of this hereditary hearing disorder, we performed a genome-wide association study (GWAS) by using a sample of 23 affected and 162 control Rhodesian Ridgebacks. We identified a genomic region on canine chromosome 18 (CFA18) that is strongly associated with EOAD, and our subsequent targeted Sanger sequencing analysis identified a 12-bp inframe deletion in EPS8L2 (CFA18:25,868,739-25,868,751 in the UMICH_Zoey_3.1/canFam5 reference genome build). Additional genotyping confirmed a strong association between the 12-bp deletion and EOAD, where all affected dogs were homozygous for the deletion, while none of the control dogs was a deletion homozygote. A segregation pattern of this deletion in a 2-generation nuclear family indicated an autosomal recessive mode of inheritance. Since EPS8L2 plays a critical role in the maintenance and integrity of the inner ear hair cells in humans and other mammals, the inframe deletion found in this study represents a strong candidate causal mutation for EOAD in Rhodesian Ridgebacks. Genetic and clinical similarities between childhood deafness in humans and EOAD in Rhodesian Ridgebacks emphasizes the potential value of this dog breed in translational research in hereditary hearing disorders.


Assuntos
Surdez , Doenças do Cão , Perda Auditiva , Animais , Surdez/genética , Surdez/veterinária , Doenças do Cão/genética , Cães , Estudo de Associação Genômica Ampla , Perda Auditiva/genética , Perda Auditiva/veterinária , Mamíferos/genética , Deleção de Sequência
3.
PLoS One ; 16(3): e0248233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33755696

RESUMO

Structural variations (SVs) represent a large fraction of all genetic diversity, but how this genetic diversity is translated into phenotypic and organismal diversity is unclear. Explosive diversification of dog coat color and patterns after domestication can provide a unique opportunity to explore this question; however, the major obstacle is to efficiently collect a sufficient number of individuals with known phenotypes and genotypes of hundreds of thousands of markers. Using customer-provided information about coat color and patterns of dogs tested on a commercial canine genotyping platform, we identified a genomic region on chromosome 38 that is strongly associated with a mottled coat pattern (roaning) by genome-wide association study. We identified a putative causal variant in this region, an 11-kb tandem duplication (11,131,835-11,143,237) characterized by sequence read coverage and discordant reads of whole-genome sequence data, microarray probe intensity data, and a duplication-specific PCR assay. The tandem duplication is in an intronic region of usherin gene (USH2A), which was perfectly associated with roaning but absent in non-roaned dogs. We detected strong selection signals in this region characterized by reduced nucleotide diversity (π), increased runs of homozygosity, and extended haplotype homozygosity in Wirehaired Pointing Griffons and Australian Cattle Dogs (typically roaned breeds), as well as elevated genetic difference (FST) between Wirehaired Pointing Griffon (roaned) and Labrador Retriever (non-roaned). Surprisingly, all Dalmatians (N = 262) carried the duplication embedded in identical or similar haplotypes with roaned dogs, indicating this region as a shared target of selection during the breed's formation. We propose that the Dalmatian's unique spots were a derived coat pattern by establishing a novel epistatic interaction between roaning "R-locus" on chromosome 38 and an uncharacterized modifier locus. These results highlight the utility of consumer-oriented genotype and phenotype data in the discovery of genomic regions contributing to phenotypic diversity in dogs.


Assuntos
Pelo Animal/metabolismo , Cães/genética , Proteínas da Matriz Extracelular/genética , Animais , Cães/metabolismo , Epistasia Genética , Duplicação Gênica , Loci Gênicos , Cor de Cabelo , Íntrons , Fenótipo
4.
Trends Genet ; 35(11): 804-817, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31526615

RESUMO

Global outbreaks of drug-resistant fungi such as Candida auris are thought to be due at least in part to excessive use of antifungal drugs. Baker's yeast Saccharomyces cerevisiae has gained importance as an emerging opportunistic fungal pathogen that can cause infections in immunocompromised patients. Analyses of over 1000 S. cerevisiae isolates are providing rich resources to better understand how fungi can grow in human environments. A large percentage of clinical S. cerevisiae isolates are heterozygous across many nucleotide sites, and a significant proportion are of mixed ancestry and/or are aneuploid or polyploid. Such features potentially facilitate adaptation to new environments. These observations provide strong impetus for expanding genomic and molecular studies on clinical and wild isolates to understand the prevalence of genetic diversity and instability-generating mechanisms, and how they are selected for and maintained. Such work can also lead to the identification of new targets for antifungal drugs.


Assuntos
Candidíase/microbiologia , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Adaptação Biológica , Suscetibilidade a Doenças , Variação Genética , Interações Hospedeiro-Patógeno , Humanos , Mutação , Infecções Oportunistas/microbiologia , Fenótipo , Ploidias , Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/patogenicidade , Virulência
5.
PLoS Genet ; 15(6): e1008177, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170160

RESUMO

During meiotic prophase I, double-strand breaks (DSBs) initiate homologous recombination leading to non-crossovers (NCOs) and crossovers (COs). In mouse, 10% of DSBs are designated to become COs, primarily through a pathway dependent on the MLH1-MLH3 heterodimer (MutLγ). Mlh3 contains an endonuclease domain that is critical for resolving COs in yeast. We generated a mouse (Mlh3DN/DN) harboring a mutation within this conserved domain that is predicted to generate a protein that is catalytically inert. Mlh3DN/DN males, like fully null Mlh3-/- males, have no spermatozoa and are infertile, yet spermatocytes have grossly normal DSBs and synapsis events in early prophase I. Unlike Mlh3-/- males, mutation of the endonuclease domain within MLH3 permits normal loading and frequency of MutLγ in pachynema. However, key DSB repair factors (RAD51) and mediators of CO pathway choice (BLM helicase) persist into pachynema in Mlh3DN/DN males, indicating a temporal delay in repair events and revealing a mechanism by which alternative DSB repair pathways may be selected. While Mlh3DN/DN spermatocytes retain only 22% of wildtype chiasmata counts, this frequency is greater than observed in Mlh3-/- males (10%), suggesting that the allele may permit partial endonuclease activity, or that other pathways can generate COs from these MutLγ-defined repair intermediates in Mlh3DN/DN males. Double mutant mice homozygous for the Mlh3DN/DN and Mus81-/- mutations show losses in chiasmata close to those observed in Mlh3-/- males, indicating that the MUS81-EME1-regulated crossover pathway can only partially account for the increased residual chiasmata in Mlh3DN/DN spermatocytes. Our data demonstrate that mouse spermatocytes bearing the MLH1-MLH3DN/DN complex display the proper loading of factors essential for CO resolution (MutSγ, CDK2, HEI10, MutLγ). Despite these functions, mice bearing the Mlh3DN/DN allele show defects in the repair of meiotic recombination intermediates and a loss of most chiasmata.


Assuntos
Proteínas de Ligação a DNA/genética , Endonucleases/genética , Prófase Meiótica I/genética , Proteínas MutL/genética , Animais , Pareamento Cromossômico/genética , Troca Genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Recombinação Homóloga/genética , Masculino , Meiose/genética , Camundongos , Proteína 1 Homóloga a MutL/genética , Proteínas MutS/genética , Rad51 Recombinase/genética , Espermatócitos/crescimento & desenvolvimento , Espermatócitos/metabolismo
6.
Genetics ; 210(4): 1253-1266, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30348651

RESUMO

Laboratory baker's yeast strains bearing an incompatible combination of MLH1 and PMS1 mismatch repair alleles are mutators that can adapt more rapidly to stress, but do so at the cost of long-term fitness. We identified 18 baker's yeast isolates from 1011 surveyed that contain the incompatible MLH1-PMS1 genotype in a heterozygous state. Surprisingly, the incompatible combination from two human clinical heterozygous diploid isolates, YJS5845 and YJS5885, contain the exact MLH1 (S288c-derived) and PMS1 (SK1-derived) open reading frames originally shown to confer incompatibility. While these isolates were nonmutators, their meiotic spore clone progeny displayed mutation rates in a DNA slippage assay that varied over a 340-fold range. This range was 30-fold higher than observed between compatible and incompatible combinations of laboratory strains. Genotyping analysis indicated that MLH1-PMS1 incompatibility was the major driver of mutation rate in the isolates. The variation in the mutation rate of incompatible spore clones could be due to background suppressors and enhancers, as well as aneuploidy seen in the spore clones. Our data are consistent with the observed variance in mutation rate contributing to adaptation to stress conditions (e.g., in a human host) through the acquisition of beneficial mutations, with high mutation rates leading to long-term fitness costs that are buffered by mating or eliminated through natural selection.


Assuntos
Proteína 1 Homóloga a MutL/genética , Proteínas MutL/genética , Proteínas de Saccharomyces cerevisiae/genética , Seleção Genética/genética , Esporos Fúngicos/genética , Alelos , Reparo de Erro de Pareamento de DNA/genética , Reparo do DNA/genética , Genótipo , Humanos , Mutação , Taxa de Mutação , Saccharomyces cerevisiae/genética , Esporos Fúngicos/crescimento & desenvolvimento
7.
PLoS Genet ; 13(8): e1006974, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28827832

RESUMO

Mlh1-Mlh3 is an endonuclease hypothesized to act in meiosis to resolve double Holliday junctions into crossovers. It also plays a minor role in eukaryotic DNA mismatch repair (MMR). To understand how Mlh1-Mlh3 functions in both meiosis and MMR, we analyzed in baker's yeast 60 new mlh3 alleles. Five alleles specifically disrupted MMR, whereas one (mlh3-32) specifically disrupted meiotic crossing over. Mlh1-mlh3 representatives for each class were purified and characterized. Both Mlh1-mlh3-32 (MMR+, crossover-) and Mlh1-mlh3-45 (MMR-, crossover+) displayed wild-type endonuclease activities in vitro. Msh2-Msh3, an MSH complex that acts with Mlh1-Mlh3 in MMR, stimulated the endonuclease activity of Mlh1-mlh3-32 but not Mlh1-mlh3-45, suggesting that Mlh1-mlh3-45 is defective in MSH interactions. Whole genome recombination maps were constructed for wild-type and MMR+ crossover-, MMR- crossover+, endonuclease defective and null mlh3 mutants in an S288c/YJM789 hybrid background. Compared to wild-type, all of the mlh3 mutants showed increases in the number of noncrossover events, consistent with recombination intermediates being resolved through alternative recombination pathways. Our observations provide a structure-function map for Mlh3 that reveals the importance of protein-protein interactions in regulating Mlh1-Mlh3's enzymatic activity. They also illustrate how defective meiotic components can alter the fate of meiotic recombination intermediates, providing new insights for how meiotic recombination pathways are regulated.


Assuntos
Recombinação Homóloga/genética , Proteína 1 Homóloga a MutL/genética , Proteínas MutL/genética , Mapas de Interação de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Alelos , Troca Genética , Reparo de Erro de Pareamento de DNA/genética , Genoma Fúngico , Meiose/genética , Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
8.
PLoS One ; 9(10): e109160, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25299516

RESUMO

Chlamydomonas reinhardtii is a prospective model system for understanding molecular mechanisms associated with DNA repair in plants and algae. To explore this possibility, we have developed an in vitro repair system from C. reinhardtii cell-free extracts that can efficiently repair UVC damage (Thymine-dimers) in the DNA. We observed that excision repair (ER) synthesis based nucleotide incorporation, specifically in UVC damaged supercoiled (SC) DNA, was followed by ligation of nicks. Photoreactivation efficiently competed out the ER in the presence of light. In addition, repair efficiency in cell-free extracts from ER deficient strains was several fold lower than that of wild-type cell extract. Interestingly, the inhibitor profile of repair DNA polymerase involved in C. reinhardtii in vitro ER system was akin to animal rather than plant DNA polymerase. The methodology to prepare repair competent cell-free extracts described in the current study can aid further molecular characterization of ER pathway in C. reinhardtii.


Assuntos
Sistema Livre de Células/fisiologia , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiologia , Reparo do DNA/genética , DNA de Plantas/genética , Células Cultivadas , Dano ao DNA/genética , Dímeros de Pirimidina/genética , Raios Ultravioleta/efeitos adversos
9.
Biomol NMR Assign ; 8(1): 71-4, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23266947

RESUMO

Almost complete sequence specific (1)H, (13)C and (15)N resonance assignments of S114A mutant of UVI31+ from Chlamydomonas reinhardtii are reported. The cDNA of S114A mutant of UVI31+ was cloned from a eukaryotic green algae (C. reinhardtii) and overexpressed in E.coli from where the protein was purified to homogeneity. The point mutation S114A in UVI31+ reduces its DNA endonuclease activity substantially as compared with its wild type. As a prelude to the structural characterization of S114A mutant of UVI31+, we report here complete sequence-specific (1)H, (13)C and (15)N NMR assignments.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Proteínas Mutantes/química , Ressonância Magnética Nuclear Biomolecular , Proteínas de Plantas/química , Isótopos de Carbono , Hidrogênio , Concentração de Íons de Hidrogênio , Isótopos de Nitrogênio , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...